Deep Reinforcement Learning for Pairs Trading
نویسندگان
چکیده
Reinforcement learning (RL) [1] differs from traditional supervised machine learning in the sense that it not only considers short-term consequences of actions/decisions, but also long-term outcomes. Because of recent advances in deep learning, model-free deep reinforcement learning (DRL) has proven successful in various applications, as with the success of a deep Q-network (DQN) in the Atari game [2]. A common application of RL is stock trading, as the ultimate goal is to make long-term profit while accounting for the fact that current profits are valued more than future ones. We applied DRL in stock markets to train a pairs trading agent with the goal of maximizing long-term income, albeit possibly at the expense of short-term gain. Briefly, pairs trading is an investment strategy that analyzes pairs of stocks that have a common trend and involves making investment decisions when the stock prices diverge, on the assumption that they will converge back to the trend in the near future [3]. The motivation for our work is clear, as a wellperforming investment model will be very lucrative for both corporate and individual investors.
منابع مشابه
A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem
Financial portfolio management is the process of constant redistribution of a fund into different financial products. This paper presents a financial-model-free Reinforcement Learning framework to provide a deep machine learning solution to the portfolio management problem. The framework consists of the Ensemble of Identical Independent Evaluators (EIIE) topology, a Portfolio-Vector Memory (PVM...
متن کاملOperation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملReinforcement Learning-based Energy Trading for Microgrids
With the time-varying renewable energy generation and power demand, microgrids (MGs) exchange energy in smart grids to reduce their dependence on power plants. In this paper, we formulate an MG energy trading game, in which each MG trades energy according to the predicted renewable energy generation and local energy demand, the current battery level, and the energy trading history. The Nash equ...
متن کاملDeep reinforcement learning for time series: playing idealized trading games
Deep Q-learning is investigated as an end-to-end solution to estimate the optimal strategies for acting on time series input. Experiments are conducted on two idealized trading games. 1) Univariate: the only input is a wave-like price time series, and 2) Bivariate: the input includes a random stepwise price time series and a noisy signal time series, which is positively correlated with future p...
متن کاملPerformance Functions and Reinforcement Learning for Trading Systems and Portfolios
We propose to train trading systems and portfolios by optimizing objective functions that directly measure trading and investment performance. Rather than basing a trading system on forecasts or training via a supervised learning algorithm using labelled trading data, we train our systems using recurrent reinforcement learning (RRL) algorithms. The performance functions that we consider for rei...
متن کامل